skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Su, Zhi-Ming"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Zinc and manganese are widely used as reductants in synthetic methods, such as nickel-catalyzed cross-electrophile coupling (XEC) reactions, but their redox potentials are unknown in organic solvents. Here, we show how open-circuit potential measurements may be used to determine the thermodynamic potentials of Zn and Mn in different organic solvents and in the presence of common reaction additives. The impact of these Zn and Mn potentials is analyzed for a pair of Ni-catalyzed reactions, each showing a preference for one of the two reductants. Ni-catalyzed coupling of N-alkyl-2,4,6-triphenylpyridinium reagents (Katritzky salts) with aryl halides are then compared under chemical reaction conditions, using Zn or Mn reductants, and under electrochemical conditions performed at applied potentials corresponding to the Zn and Mn reduction potentials and at potentials optimized to achieve the maximum yield. The collective results illuminate the important role of reductant redox potential in Ni-catalyzed XEC reactions. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. Nickel-catalyzed cross-electrophile coupling (XEC) reactions of (hetero)aryl electrophiles represent appealing alternatives to palladium-catalyzed methods for biaryl synthesis, but they often generate significant quantities of homocoupling and/or proto-dehalogenation side products. In this study, an informer library of heteroaryl chloride and aryl bromide coupling partners is used to identify Ni-catalyzed XEC conditions that access high selectivity for the cross-product when using equimolar quantities of the two substrates. Two different catalyst systems are identified that show complementary scope and broad functional-group tolerance, and time-course data suggest the two methods follow different mechanisms. A NiBr2/terpyridine catalyst system with Zn as the reductant converts the aryl bromide into an aryl-zinc intermediate that undergoes in situ coupling with 2-chloropyridines, while a NiBr2/bipyridine catalyst system with tetrakis(dimethylamino)ethylene as the reductant uses FeBr2 and NaI as additives to achieve selective cross-coupling. 
    more » « less
    Free, publicly-accessible full text available January 8, 2026